Smart Contract
Security Audit
Vi

Presale Chaufr Smart Contract Audit

Jun 10, 2025

https://saferico.com/

business@saferico.com
https://t.me/SFI_ANN

https://saferico.com/
mailto:business@saferico.com
https://t.me/SFI_ANNg

Table of Contents

Table of Contents
Background

Project Information
Smart Contract Information

Executive Summary

File and Function Level Report
File in Scope:

Issues Checking Status
SWC Attack Analysis
Severity Definitions
Audit Findings

Automatic testing
Testing proves
Inheritance graph
Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature
Automatic general report

Conclusion

Disclaimer

Background

The purpose of the audit was to achieve the following:

e Ensure that the smart contract functions as intended.
e Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart
contract, and as a guide to improve the security posture of the smart contract by remediating
the issues that were identified.

Project Information

Platform: Binance Smart Chain

Name: PresaleChaufr

Language : Solidity

Contract Address: 0xc554c6DC24F0c462B2acb2{Fb0709¢D2eadb6741

e Code Source:
https://testnet.bscscan.com/address/0xc554c6DC24F0c462B2acb2fFb0709eD2eadb674 1#code

https://testnet.bscscan.com/address/0xc554c6DC24F0c462B2acb2fFb0709eD2eadb6741#code

PresaleChaufr Smart Contract
Crowdfunding Token Sale with Vesting

Overview

A secure, decentralized presale
platform for CHUFR tokens with
Chainlink price feeds and vesting

-

* Built on Solidity 0.8.28

* Uses OpenZeppelin’s ERC20,
Ownable, and ReentrancyGir security

* Intogrates Chainlink for real-time
BNB and USDT price feeds

Key Features

Purchase Options

e Buy CHUFR takens
with BNB or USDT
° Bonus 15%

during presale,
5% post-presale

Vesting

* Tokens vest over
24 months
starting and
post-pre-presale

Limits

e Min Buy: 10 tokens

e Max Buy: 1M tokens

e Presale

How It Works

)
- User

N%
c Connfink

N

Token
Calculation

Vesting
Assignment

Contract
Detalls

Powered by Salidity,
Opanzeppelin, and
Chalnlink

Security & Admin
Controls

Security

° Only owner can
update prices, vesting,
or admin address

e Only owner can udate
prices, vesting

Admin Functions

* Update presale prices,
vesting schedule,
or buy limits
Withdraw stuck BNB
or tokens

VestingDurationUpda-
ted, PresaleEndTime-
stamp Updated

AdminAddressUpdated
BuyLimitUpdated

Events EMITTED

O TokensPurchased
tracks buyer, amoun
cost and currency

O PriceUpdated
presale phase 1 price

O VestingDuration
Updated

audited by & SaferICO

Executive Summary

According to our assessment, the customer's solidity smart contract is Well-Secured.

Poor Secured

Automated checks are with remix IDE. All issues were performed by the team, which included the
analysis of code functionality, manual audit found during automated analysis were manually
reviewed and applicable vulnerabilities are presented in the audit overview section. The general
overview is presented in the Project Information section and all issues found are located in the
audit overview section.

Team found O critical, 0 high, 0 medium, 2 low, 0 very low-level issues and 2 note in all solidity files of the
contract

The files:

PresaleChaufr.sol

Audit Score:

99% secure

File and Function Level Report

File in Scope:

Contract Name Contract Address

PresaleChaufr.sol
bd44dd30b7ebcfb30f0 6741

e Contract: PresaleChaufr

e Inherit: Ownable, ReentrancyGuard

e Observation: All passed including security check

e Test Report: passed

e Score: passed

e Conclusion: passed

Function Test Type / Score
Result Return Type

admin v Read / public Passed
chainLinkBnb v Read / public Passed
chainLinkUsdt v Read / public Passed
getBnbPricePerToken v Read / public Passed
getUsdtPricePerToken v Read / public Passed
presaleEndTimestamp v Read / public Passed
owner v Read / public Passed
maxBuyLimit v Read / public Passed
minBuyLimit v Read / public Passed
presalePhase1UsdPrice v Read / public Passed
presalePhase2UsdPrice v Read / public Passed
presalePurchaseLimit v Read / public Passed
token v Read / public Passed
totalPurchasedToken v Read / public Passed

usdt v Read / public Passed
vesting v Read / public Passed
vestingDuration v Read / public Passed
vestingStartTime v Read / public Passed
transferOwnership v Write / public Passed
renounceOwnership v Write / public Passed
buyTokenUSDT v Write / public Passed
buyTokenBNB v Write / Passed
payable

updateAdminAddress v Write / public Passed
updateBuyLimit Write / public Passed
updatePresalePhase2Pric Write / public Passed
e

updatePresalePhaselPric v Write / public Passed
e

updatePresaleTimestamp v Write / public Passed
updateVestingSchedule v Write / public Passed
withdrawStuckTokens v Write / public Passed
withdrawStuckBNB v Write / public Passed

Issues Checking Status

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the
weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies
and structure used in the Common Weakness Enumeration (CWE) for more info check

https://swcreqistry.io/

Issue Checking
Description Status

136 | Unencrypted Private Data On-Chain Passed
135 | Code With No Effects Passed
134 | Message call with hardcoded gas amount Passed
133 | Hash Collisions With Multiple Variable Length Passed

Arguments
132 | Unexpected Ether balance Passed
131 | Presence of unused variables Passed
130 | Right-To-Left-Override control character (U+202E) Passed
129 | Typographical Error Passed
128 | DoS with block gas limit. Passed
127 | Arbitrary Jump with Function Type Variable Passed
126 | Insufficient Gas Griefing Passed
125 | Incorrect Inheritance Order Passed
124 Write to Arbitrary Storage Location Passed
123 | Requirement Violation Passed
122 | Lack of Proper Signature Verification Passed
121 | Missing Protection against Signature Replay Passed

Attacks
120 | Weak Sources of Randomness from Chain Passed

Attributes

Shadowing State Variables Passed
119

https://swcregistry.io/

118 | Incorrect Constructor Name Passed
117 | Signature Malleability Passed
116 | Block values as a proxy for time Not Passed
115 | Authorization through tx.origin Passed
114 | Transaction Order Dependence Passed
113 | DoS with Failed Call Passed
112 | Delegatecall to Untrusted Callee Passed
111 | Use of Deprecated Solidity Functions Passed
110 | Assert Violation Passed
109 | Uninitialized Storage Pointer Passed
108 | State Variable Default Visibility Passed
107 | Reentrancy Passed
106 | Unprotected SELFDESTRUCT Instruction Passed
105 | Unprotected Ether Withdrawal Passed
104 | Unchecked Call Return Value Passed
103 | Floating Pragma Passed
102 | Outdated Compiler Version Passed
101 | Integer Overflow and Underflow Passed
100 | Function Default Visibility Passed

Severity Definitions

Risk Description
Level
Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.

High High-level vulnerabilities are difficult to exploit;
however, they also have significant impact on smart
contract execution,

e.g. public access to crucial functions
Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low Low-level vulnerabilities are mostly related to
outdated, unused etc. code snippets, that can’t have
significant impact on execution

Note Lowest-level vulnerabilities, code style violations and
info statements can’t affect smart contract execution
and can be ignored.

Audit Findings

Critical:

No Critical severity vulnerabilities were found.

No High severity vulnerabilities were found.

No Medium severity vulnerabilities were found.

Low:

#Admin Address vs. Owner:

Description

The contract uses admin for receiving funds but owner () (from Ownable) for management functions. This
creates a potential for a mismatch if the admin address is intended to be the primary control. While owner ()
is the typical pattern for ownable, if the admin is meant to be the sole recipient of funds and also have
management capabilities, it might be clearer to rely solely on the owner () from ownable and transfer
ownership if needed, or make admin also the owner ().

Recommendation:

Option 1 (Preferred): Remove the admin state variable and associated functions (updateAdminAddress).
Funds should be sent to owner (). If the intention is to separate roles, consider using OpenZeppelin's
AccessControl for more granular role management.

Option 2 (If separation is intended): Clearly document the distinction between admin and owner. Ensure that
the admin address can only be changed by the owner (), which is already implemented. The current setup is

technically correct but might lead to confusion.

P.S: This issue is common to the majority of those smart contracts.
Status: Acknowledged.

#Owner privileges (In the period when the owner isn’t renounced)

Description

The owner can change the price of the presale.
The owner can change the time of the presale.
The owner can change the limit of buying.

function updatePresalePhaselPrice (uint256 usdPresalePhaselPrice) external
onlyOwner

require (usdPresalePhaselPrice > 0, "Price cannot be zero");
presalePhaselUsdPrice = usdPresalePhaselPrice;

emit PriceUpdated(usdPresalePhaselPrice);

function updatePresalePhase2Price (uint256 usdPresalePhase2Price) external
onlyOwner

require (_usdPresalePhase2Price > 0, "Price cannot be zero");
presalePhase2UsdPrice = usdPresalePhase2Price;

emit PriceUpdatedForAfterPresale(usdPresalePhaseZPrice);
}
function updatePresaleTimestamp (uint256 presaleEndTimestamp) external onlyOwner {

require (presaleEndTimestamp >= block.timestamp, "Timestamp must be in the
future") ;

presaleEndTimestamp = presaleEndTimestamp;
vesting.setVestingPresaleEndTimestamp (presaleEndTimestamp) ;

emit PresaleEndTimestampUpdated(presaleEndTimestamp) ;
}

function updateBuyLimit (uint256 minBuyLimit, uint256 maxBuyLimit) external
onlyOwner {

require(minBuyLimit > 0 && maxBuyLimit > 0, "Amount could not be zero");

require(minBuyLimit != minBuyLimit || maxBuyLimit != maxBuyLimit, "At
least one value must be different");

minBuyLimit _minBuyLimit;

maxBuyLimit = maxBuyLimit;

emit BuyLimitUpdated(minBuyLimit, maxBuyLimit);

Remediation

Make these functions internal in next version or the team should announce the investors before doing
anything to give them time if they want to do anything.

P.S: This issue is common to the majority of those smart contracts.
Status: Acknowledged.

Very Low:

No Very Low severity vulnerabilities were found.
Notes:

#Magic Numbers:

Description

Hardcoded numbers like 1e18, 1e10, 15,5, 10,1 000 000, 300 000 000 are used directly in the code
without clear explanations.

Recommendation

Define these as named constants (e.g., DECIMALS, BONUS PRESALE, BONUS AFTER PRESALE,
_DEFAULT MIN BUY LIMIT, DEFAULT MAX BUY LIMIT, DEFAULT PRESALE PURCHASE LIMIT). This
improves readability and maintainability.

Code Example:
Solidity

uint256 public constant TOKEN DECIMALS FACTOR = 1lel8;

uint256 public constant CHAINLINK PRICE DECIMALS ADJUSTMENT = 1lelO;
uint256 private constant PRESALE BONUS PERCENTAGE = 15;

uint256 private constant AFTER PRESALE BONUS PERCENTAGE = 5;

// In constructor

minBuyLimit = 10 * TOKEN DECIMALS FACTOR;

uint256 bonusPercentage = block.timestamp <= presaleEndTimestamp °?
PRESALE BONUS PERCENTAGE : AFTER PRESALE BONUS PERCENTAGE;

Use of block.timestamp for comparisons

The value of block.timestamp can be manipulated by the miner. And conditions with
strict equality is difficult to achieve - block.timestamp.

function updateVestingSchedule (uint256 vestingStartTime, uint256
_vestingDuration) external onlyOwner {

require(vestingStartTime > block.timestamp, "Start
timestamp must be in the future");

require (vestingDuration > 0, "Vesting duration can't be
q _ g g
zero") ;

vestingStartTime = vestingStartTime;

vestingDuration = vestingDuration;

emitVestingDurationUpdated(vestingStartTime, vestingDuration;}

Recommendation

Avoid use of block.timestamp.

Automatic Testing

1-

SOLIDITY STATIC ANALYSIS

v Select all

-

¥ Autorun

Security

v Select Security

v

Transaction origin:
tx.origin' used
Check-effects-interaction:
Potential reentrancy bugs
Inline assembly:

Inline assembly used

Block timestamp:

Can be influenced by miners
Low level calls:

Should only be used by
experienced devs

Block hash:

Can be influenced by miners
Selfdestruct:

Contracts using destructed
contract can be broken

Gas & Economy

¥ Select Gas & Economy

2-

-

Gas costs:

Too high gas requirement of
functions

This on local calls:
Invocation of local functions via
‘this*

Delete dynamic array:

Use requirefassert to ensure
complete deletion

For loop over dynamic array:
Iterations depend on dynamic
array's size

Ether transfer in loop:
Transferring Ether in a
forfwhilef/do-while loop

Inheritance graph

PresaleChaufr

SOLIDITY STATIC ANALYSIS

a SOLIDITY STATIC ANALYSIS

4

ERC

Select ERC

v

ERC20:
'decimals’ should be 'uint8'

Miscellaneous

Select Miscellaneous

v

Constant/View/Pure
functions:

Potentially constant/view/pure
functions

Similar variable names:
Variable names are too similar
No return:

Function with 'returns' not
returning

Guard conditions:

Ensure appropriate use of
requirefassert

Result not used:

The result of an operation not
used

String length:

Bytes length != String length
Delete from dynamic array:
‘delete' leaves a gap in array
Data truncated:

Division on intfuint values
truncates the result

IChaufrvesting IChainlinkAggregatorBnb IChainlinkAggregatorUsdt

3- Call graph

ReentrancyGuard

nonReentrant

_reentrancyGuardEntered

_nonReentrantAfter

_nonReentrantBefore

PresaleChaufr

buyTokenBNB \

buyTokenUSDT
getBnbPricePerToken
updatePresalePhaselPrice

updatePresaleTimestamp
Context
|

getUsdtPricePerToken

IChaufrVesting (iface) IChginlinkAggregatorBnb (iface

latestRoundData
\ addPresaleVestingSchedule ’inlinkAggregatorUsdt (iface

\ latestRoundData

IERC20 (iface)

totalSupply
balanceOf
Ownable

@ OwnablelnvalidOwner
transferownership

Source lines

B source | comment M single 7 block I mixed
P empty [todo [blockEmpty

Risk level
E——doverall | average
perceivedComplexity
rd
6
compilerVersion size
compilerFeatures numLogicContracts

inlineDocumentation interfaceRisk

Source units in scope

Source Units in Scope

Source Units Analyzed: 1
Source Units in Scope: 1 (100%)

Type File Logic Contracts Interfaces Lines nLines nSLOC CommentLines Complex. Score Capabilities
24% PresaleChaufrsol =~ 4 4 563 468 257 172 217 A
/4% Totals 4 4 563 468 257 172 217 B

Legend: [~

+ Lines: total lines of the source unit

» nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)

» nSLOC: normalized source lines of code (only source-code lines; no comments, no blank lines)
+ Comment Lines: lines containing single or block comments

« Complexity Score: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces, ...)

Capabilities
Components

~Contracts ELibraries 4lInterfaces @Abstract

1 0 B 3

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

{#Public &Payable

28 3
External Internal Private Pure View
23 30 2 0 14

StateVariables
Total = {Public
19 15

Capabilities

Solidity Versions observed # Experimental Features & Can Receive Funds ™ Uses Assembly = @ Has Destroyable Contracts

~0.8.20
~0.8.0 yes
9.8.28

= Transfers ETH Low-Level Calls 22 DelegateCall Uses Hash Functions “ ECRecover ® New/Create/Create2

yes

Unified Modeling Language (UML)

(@ iErc20

o [JtotalSupply()
e [JbalanceOf()
o transfer()

o [Jallowance()
o approve()

o transferFrom()

1

/

N
account

L1

N

AN
from initialOwner

N

AN
\

/
admin

® IChaufrVesting

© PresaleChaufr

o addVestingSchedule()
o addPresaleVestingSchedule()
o setVestingPresaleEndTimestamp()

@ IChainlinkAggregatorBnb

@IChainﬁnkAggregatomsdt

o [JlatestRoundDatal()

o [JlatestRoundData()

AN, AN,
s N

\ /
owner spender

newOwner beneficiary

Ownable
ReentrancyGuard

o |[ERC20 token

o |[ERC20 usdt

o IChaufrvesting vesting

o IChainlinkAggregatorBnb chainLinkBnb
o IChainlinkAggregatorUsdt chainLinkUsdt
o uint256 presalePhaselUsdPrice

o uint256 presalePhase2UsdPrice

o uint256 vestingStartTime

o uint256 vestingDuration

o uint256 presaleEndTimestamp

o address admin

o uint256 minBuyLimit

nt256 maxBuyLimit

nt256 totalPurchasedToken

nt256 presalePurchaseLimit

=

O_
o ui
o Ui

e _ constructor_ ()

o [JbuyTokenBNB()

o buyTokenUSDT()

e updatePresalePhaselPrice()
e updatePresalePhase2Price()
o updateVestingSchedule()

o updatePresaleTimestampi)
e updateAdminAddress()

e updateBuyLimit()

o [JgetBnbPricePerToken()

o [JgetUsdtPricePerToken()

< []_tokenPriceByPhase()

o withdrawStuckBNB()

o withdrawStuckTokens()

o []_receive_ ()

o [_fallback_ ()

@ Ownable N

Context

o address _owner

© ReentrancyGuard

o uint256 NOT ENTERED
o uint256 ENTERED
o uint256 _status

o _constructor_ ()
o [Jowner()

o __constructor_ ()

< [_checkOwner()

o renounceOwnership()
o transferOwnership()
< _transferOwnership()

= _nonReentrantBefore()
= _nonReentrantAfter()
© [_reentrancyGuardEntered()

© C:.)ntext

% [L_msgSender()
© [_LmsgData()
< []_contextSuffixLength()

Functions signature

| Function Name | Sighash | Function Signature |
| == | —==mmm | = |
totalSupply | 18160ddd | totalSupply() |
balanceOf | 70a08231 | balanceOf (address) |
transfer | a%9059cbb | transfer (address,uint256) |
allowance | ddo62ed3e | allowance (address, address) |
approve | 095ea7b3 | approve (address,uint256) |
transferFrom | 23b872dd | transferFrom(address, address,uint256) |
owner | 8dabcbb5b | owner () |

renounceOwnership | 715018a6 | renounceOwnership() |
addVestingSchedule | 24ef8clb |
ddVestingSchedule (address,uint256,uint256,uint256) |

|
|
|
|
|
|
|
|
| transferOwnership | f2fde38b | transferOwnership (address) |
|
a
|

addPresaleVestingSchedule | ccc65551 |
addPresaleVestingSchedule (address,uint256,uint256,uint256) |
| setVestingPresaleEndTimestamp | 0Oa3cbdd5 |
setVestingPresaleEndTimestamp (uint256) |
latestRoundData	feaf968c	latestRoundData ()
latestRoundData	feaf968c	latestRoundData()
buyTokenBNB	£27827b4	buyTokenBNB ()
buyTokenUSDT	bbe75elc	buyTokenUSDT (uint256)
updatePresalePhaselPrice	5ccb48c8	updatePresalePhaselPrice (uint256)
updatePresalePhaseZ2Price	0b7abl58	updatePresalePhase2Price (uint256)
updateVestingSchedule	72b320fe	
updateVestingSchedule (uint256,uint256)		
updatePresaleTimestamp	227640f9	updatePresaleTimestamp (uint256)
updateAdminAddress	85e2381lc	updateAdminAddress (address)
updateBuyLimit	983168fc	updateBuyLimit (uint256,uint256)
getBnbPricePerToken	f5bb4f59	getBnbPricePerToken()
getUsdtPricePerToken	74508abc	getUsdtPricePerToken ()
withdrawStuckBNB	484ed334	withdrawStuckBNB ()
withdrawStuckTokens	cb963728	withdrawStuckTokens (address)

Automatic general report

Files Description Table
| File Name | SHA-1 Hash |

| /Users/macbook/Desktop/smart contracts/PresaleChaufr.sol |
198fb3829689cb5375cfebd44dd30b7ebcfb30£0 |

Contracts Description Table

| Contract | Type | Bases |

e e e |
L | **Function Name** | **Visibility** | **Mutability**
Modifiers |

setVestingPresaleEndTimestamp | Externa

|

|

1]

| **IERC20** | Interface | []]

| L totalSupply | External ﬂ | INOU |

| L | balanceOf | External ﬂ | |NOH |

| L | transfer | External u | © INOH |

| L | allowance | External ﬂ | INOH |

| L | approve | External ﬂ | © INOH |

| L | transferFrom | External u | © INOE |

LT

| **Context** | Implementation | []]

| L | msgSender | Internal (® | | |

| L | msgData | Internal @ | ||

| L | _contextSuffixLength | Internal Eﬂ | |
NN

| **Ownable** | Implementation | Context |||

| L | <Constructor> | pPublic | | @ [nof |

| L | owner | Public [| INOf |

| L| _checkOwner | Internal Eﬁl |

L	renounceOwnership	Public ﬂ	©	onlyOwner
L	transferOwnership	Public u	©	onlyOwner
L	transferOwnership	Internal @	©	
LT

| **ReentrancyGuard** | Implementation | |||

| L | <Constructor> | Public ﬂ | © INOﬂ |

| L | nonReentrantBefore | Private | © |

| Lo _nonReentrantAfter | Private @ | © [

| L | reentrancyGuardEntered | Internal E}| |
NN

| **IChaufrVesting** | Interface | [1]

| L | addVestingSchedule | External u | © INOH |

| L | addPresaleVestingSchedule | External u | © INOH |
Ly 1l @
NN

IChainlinkAggregatorBnb | Interface | [1]

L | latestRoundData | External u | INOE |
LI
IChainlinkAggregatorUsdt | Interface | []
L | latestRoundData | External H | INOﬂ |
NN
PresaleChaufr | Implementation | Ownable, ReentrancyGuard |||
L | <Constructor> | Public u | © | Ownable |
L buyTokenBNB | External ﬂ | K | nonReentrant |
L | buyTokenUSDT | External u | © | nonReentrant |
L | updatePresalePhaselPrice | External ﬂ | @ | onlyOwner |
L | updatePresalePhase2Price | External ﬂ | © | onlyOwner |
L | updatevVestingSchedule | External ﬂ | © | onlyOwner |
L | updatePresaleTimestamp | External u | © | onlyOwner |
L | updateAdminAddress | External ﬂ | © | onlyOwner |
L | updateBuyLimit | External H | © | onlyOwner |
L | getBnbPricePerToken | Public u | INOH |
L | getUsdtPricePerToken | Public ﬂ | INOH |
L | tokenPriceByPhase | Internal EB | ||
L | withdrawStuckBNB | External u | © | onlyOwner nonReentrant |
L | withdrawStuckTokens | External ﬂ | © | onlyOwner nonReentrant |
L | <Receive Ether> | External [| EB |NoOf |
L | <Fallback> | External ﬂ | ()] |NOH |
Legend
Symbol | Meaning |
e e el [e |
© | Function can modify state |

6} | Function is payable |

Conclusion

The contracts are written systematically. Team found no critical issues. So, it is
good to go for production.

Since possible test cases can be unlimited and developer level documentation (code
flow diagram with function level description) not provided, for such an extensive smart
contract protocol, we provide no such guarantee of future outcomes. We have used
all the latest static tools and manual observations to cover maximum possible test
cases to scan Everything.

Security state of the reviewed contract is “Well Secured”.

v Novolatile code.
v No high severity issues were found.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the
framework and algorithms based on smart contracts, the details of which are set out in this report.
In order to get a full view of our analysis, it is crucial for you to read the full report. While we have
done our best in conducting our analysis and producing this report, it is important to note that you
should not rely on this report and cannot claim against the team on the basis of what it says or
doesn’t say, or how team produced it, and it is important for you to conduct your own independent
investigations before making any decisions. team go into more detail on this in the below
disclaimer below — please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you
do not agree to the terms, then please immediately cease reading this report, and
delete and destroy any and all copies of this report downloaded and/or printed by you.
This report is provided for information purposes only and on a non-reliance basis, and
does not constitute investment advice. No one shall have any right to rely on the report
or its contents, and Saferico and its affiliates (including holding companies,
shareholders, subsidiaries, employees, directors, officers and other representatives)
(Saferico s) owe no duty of care towards you or any other person, nor does Saferico
make any warranty or representation to any person on the accuracy or completeness of
the report. The report is provided "as is", without any conditions, warranties or other
terms of any kind except as set out in this disclaimer, and Saferico hereby excludes all
representations, warranties, conditions and other terms (including, without limitation, the
warranties implied by law of satisfactory quality, fitness for purpose and the use of
reasonable care and skill) which, but for this clause, might have effect in relation to the
report. Except and only to the extent that it is prohibited by law, Saferico hereby
excludes all liability and responsibility, and neither you nor any other person shall have
any claim against Saferico, for any amount or kind of loss or damage that may result to
you or any other person (including without limitation, any direct, indirect, special,
punitive, consequential or pure economic loss or damages, or any loss of income,
profits, goodwill, data, contracts, use of money, or business interruption, and whether in
delict, tort (including without limitation negligence), contract, breach of statutory duty,
misrepresentation (whether innocent or negligent) or otherwise under any claim of any
nature whatsoever in any jurisdiction) in any way arising from or connected with this
report and the use, inability to use or the results of use of this report, and any reliance
on this report. The analysis of the security is purely based on the smart contracts alone.
No applications or operations were reviewed for security. No product code has been
reviewed.

	Table of Contents
	Background
	Project Information
	Executive Summary

	File and Function Level Report
	File in Scope:

	Issues Checking Status
	Audit Findings
	Critical:
	High:
	Medium:
	Low:

	P.S: This issue is common to the majority of those smart contracts.
	Status: Acknowledged.
	function updatePresalePhase1Price(uint256 _usdPresalePhase1Price) external onlyOwner {
	require(_usdPresalePhase1Price > 0, "Price cannot be zero");
	presalePhase1UsdPrice = _usdPresalePhase1Price;
	emit PriceUpdated(_usdPresalePhase1Price);
	}
	function updatePresalePhase2Price(uint256 _usdPresalePhase2Price) external onlyOwner {
	require(_usdPresalePhase2Price > 0, "Price cannot be zero");
	presalePhase2UsdPrice = _usdPresalePhase2Price;
	emit PriceUpdatedForAfterPresale(_usdPresalePhase2Price);
	}
	function updatePresaleTimestamp(uint256 _presaleEndTimestamp) external onlyOwner {
	require(_presaleEndTimestamp >= block.timestamp, "Timestamp must be in the future");
	presaleEndTimestamp = _presaleEndTimestamp;
	vesting.setVestingPresaleEndTimestamp(_presaleEndTimestamp);
	emit PresaleEndTimestampUpdated(_presaleEndTimestamp);
	}
	function updateBuyLimit(uint256 _minBuyLimit, uint256 _maxBuyLimit) external onlyOwner {
	require(_minBuyLimit > 0 && _maxBuyLimit > 0, "Amount could not be zero");
	require(_minBuyLimit != minBuyLimit || _maxBuyLimit != maxBuyLimit, "At least one value must be different");
	minBuyLimit = _minBuyLimit;
	maxBuyLimit = _maxBuyLimit;
	emit BuyLimitUpdated(_minBuyLimit, _maxBuyLimit);
	}
	Remediation
	Make these functions internal in next version or the team should announce the investors before doing anything to give them time if they want to do anything.
	P.S: This issue is common to the majority of those smart contracts.
	Status: Acknowledged.
	Very Low:
	Notes:
	Automatic Testing

	Functions signature
	Automatic general report
	Conclusion
	Disclaimer

