
Smart Contract

Security Audit

V1

Presale Chaufr Smart Contract Audit

Jun 10, 2025

https://saferico.com/

business@saferico.com

https://t.me/SFI_ANN

https://saferico.com/
mailto:business@saferico.com
https://t.me/SFI_ANNg

Table of Contents

Table of Contents

Background

Project Information

Smart Contract Information

Executive Summary

File and Function Level Report

File in Scope:

Issues Checking Status

SWC Attack Analysis

Severity Definitions

Audit Findings

Automatic testing

 Testing proves

 Inheritance graph

 Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature

Automatic general report

Conclusion

Disclaimer

Background

The purpose of the audit was to achieve the following:

● Ensure that the smart contract functions as intended.

● Identify potential security issues with the smart contract.

The information in this report should be used to understand the risk exposure of the smart

contract, and as a guide to improve the security posture of the smart contract by remediating

the issues that were identified.

Project Information

● Platform: Binance Smart Chain

● Name: PresaleChaufr

● Language : Solidity

● Contract Address: 0xc554c6DC24F0c462B2acb2fFb0709eD2eadb6741

● Code Source:

https://testnet.bscscan.com/address/0xc554c6DC24F0c462B2acb2fFb0709eD2eadb6741#code

https://testnet.bscscan.com/address/0xc554c6DC24F0c462B2acb2fFb0709eD2eadb6741#code

Executive Summary

According to our assessment, the customer`s solidity smart contract is Well-Secured.

Well Secured

✔

Secured

Poor Secured

Insecure

Automated checks are with remix IDE. All issues were performed by the team, which included the

analysis of code functionality, manual audit found during automated analysis were manually

reviewed and applicable vulnerabilities are presented in the audit overview section. The general

overview is presented in the Project Information section and all issues found are located in the

audit overview section.

Team found 0 critical, 0 high, 0 medium, 2 low, 0 very low-level issues and 2 note in all solidity files of the

contract

The files:

PresaleChaufr.sol

Audit Score:

99% secure

File and Function Level Report

File in Scope:

Contract Name SHA

256

hash

Contract Address

PresaleChaufr.sol 198fb3829689cb5375cfe

bd44dd30b7ebcfb30f0

0xc554c6DC24F0c462B2acb2fFb0709eD2eadb
6741

● Contract: PresaleChaufr

● Inherit: Ownable, ReentrancyGuard

● Observation: All passed including security check

● Test Report: passed

● Score: passed

● Conclusion: passed

Function Test

Result

Type /

Return Type

Score

admin ✔ Read / public Passed

chainLinkBnb ✔ Read / public Passed

chainLinkUsdt ✔ Read / public Passed

getBnbPricePerToken ✔ Read / public Passed

getUsdtPricePerToken ✔ Read / public Passed

presaleEndTimestamp ✔ Read / public Passed

owner ✔ Read / public Passed

maxBuyLimit ✔ Read / public Passed

minBuyLimit ✔ Read / public Passed

presalePhase1UsdPrice ✔ Read / public Passed

presalePhase2UsdPrice ✔ Read / public Passed

presalePurchaseLimit ✔ Read / public Passed

token ✔ Read / public Passed

totalPurchasedToken ✔ Read / public Passed

usdt ✔ Read / public Passed

vesting ✔ Read / public Passed

vestingDuration ✔ Read / public Passed

vestingStartTime ✔ Read / public Passed

transferOwnership ✔ Write / public Passed

renounceOwnership ✔ Write / public Passed

buyTokenUSDT ✔ Write / public Passed

buyTokenBNB ✔ Write /

payable

Passed

updateAdminAddress ✔ Write / public Passed

 updateBuyLimit ✔ Write / public Passed

updatePresalePhase2Pric

e
✔ Write / public Passed

updatePresalePhase1Pric

e
✔ Write / public Passed

updatePresaleTimestamp ✔ Write / public Passed

updateVestingSchedule ✔ Write / public Passed

withdrawStuckTokens ✔ Write / public Passed

withdrawStuckBNB ✔ Write / public Passed

Issues Checking Status

SWC Attack Analysis

The Smart Contract Weakness Classification Registry (SWC Registry) is an implementation of the
weakness classification scheme proposed in EIP-1470. It is loosely aligned to the terminologies
and structure used in the Common Weakness Enumeration (CWE) for more info check
https://swcregistry.io/

No. Issue

Description

Checking

Status

136 Unencrypted Private Data On-Chain Passed

135 Code With No Effects Passed

134 Message call with hardcoded gas amount Passed

133 Hash Collisions With Multiple Variable Length
Arguments

Passed

132 Unexpected Ether balance Passed

131 Presence of unused variables Passed

130 Right-To-Left-Override control character (U+202E) Passed

129 Typographical Error Passed

128 DoS with block gas limit. Passed

127 Arbitrary Jump with Function Type Variable Passed

126 Insufficient Gas Griefing Passed

125 Incorrect Inheritance Order Passed

124
Write to Arbitrary Storage Location

Passed

123 Requirement Violation Passed

122 Lack of Proper Signature Verification Passed

121 Missing Protection against Signature Replay
Attacks

Passed

120 Weak Sources of Randomness from Chain
Attributes

Passed

119

Shadowing State Variables Passed

https://swcregistry.io/

118 Incorrect Constructor Name Passed

117 Signature Malleability Passed

116 Block values as a proxy for time Not Passed

115 Authorization through tx.origin Passed

114 Transaction Order Dependence Passed

113 DoS with Failed Call Passed

112 Delegatecall to Untrusted Callee Passed

111 Use of Deprecated Solidity Functions Passed

110 Assert Violation Passed

109 Uninitialized Storage Pointer Passed

108 State Variable Default Visibility Passed

107 Reentrancy Passed

106 Unprotected SELFDESTRUCT Instruction Passed

105 Unprotected Ether Withdrawal Passed

104 Unchecked Call Return Value Passed

103 Floating Pragma Passed

102 Outdated Compiler Version Passed

101 Integer Overflow and Underflow Passed

100 Function Default Visibility Passed

Severity Definitions

Risk

Level

Description

Critical Critical vulnerabilities are usually straightforward to

exploit and can lead to tokens loss etc.

High High-level vulnerabilities are difficult to exploit;

however, they also have significant impact on smart

contract execution,

e.g. public access to crucial functions

Medium Medium-level vulnerabilities are important to fix;

however, they can’t lead to tokens lose

Low Low-level vulnerabilities are mostly related to

outdated, unused etc. code snippets, that can’t have

significant impact on execution

Note Lowest-level vulnerabilities, code style violations and

info statements can’t affect smart contract execution

and can be ignored.

Audit Findings

Critical:

No Critical severity vulnerabilities were found.

High:

No High severity vulnerabilities were found.

Medium:

No Medium severity vulnerabilities were found.

Low:

#Admin Address vs. Owner:

Description

The contract uses admin for receiving funds but owner() (from Ownable) for management functions. This

creates a potential for a mismatch if the admin address is intended to be the primary control. While owner()

is the typical pattern for Ownable, if the admin is meant to be the sole recipient of funds and also have

management capabilities, it might be clearer to rely solely on the owner() from Ownable and transfer

ownership if needed, or make admin also the owner().

Recommendation:

Option 1 (Preferred): Remove the admin state variable and associated functions (updateAdminAddress).

Funds should be sent to owner(). If the intention is to separate roles, consider using OpenZeppelin's

AccessControl for more granular role management.

Option 2 (If separation is intended): Clearly document the distinction between admin and owner. Ensure that

the admin address can only be changed by the owner(), which is already implemented. The current setup is

technically correct but might lead to confusion.

P.S: This issue is common to the majority of those smart contracts.

Status: Acknowledged.

#Owner privileges (In the period when the owner isn’t renounced)

Description

The owner can change the price of the presale.

The owner can change the time of the presale.

The owner can change the limit of buying.

function updatePresalePhase1Price(uint256 _usdPresalePhase1Price) external

onlyOwner {

 require(_usdPresalePhase1Price > 0, "Price cannot be zero");

 presalePhase1UsdPrice = _usdPresalePhase1Price;

 emit PriceUpdated(_usdPresalePhase1Price);

 }

 function updatePresalePhase2Price(uint256 _usdPresalePhase2Price) external

onlyOwner {

 require(_usdPresalePhase2Price > 0, "Price cannot be zero");

 presalePhase2UsdPrice = _usdPresalePhase2Price;

 emit PriceUpdatedForAfterPresale(_usdPresalePhase2Price);

 }

function updatePresaleTimestamp(uint256 _presaleEndTimestamp) external onlyOwner {

 require(_presaleEndTimestamp >= block.timestamp, "Timestamp must be in the

future");

 presaleEndTimestamp = _presaleEndTimestamp;

 vesting.setVestingPresaleEndTimestamp(_presaleEndTimestamp);

 emit PresaleEndTimestampUpdated(_presaleEndTimestamp);

 }

function updateBuyLimit(uint256 _minBuyLimit, uint256 _maxBuyLimit) external

onlyOwner {

 require(_minBuyLimit > 0 && _maxBuyLimit > 0, "Amount could not be zero");

 require(_minBuyLimit != minBuyLimit || _maxBuyLimit != maxBuyLimit, "At

least one value must be different");

 minBuyLimit = _minBuyLimit;

 maxBuyLimit = _maxBuyLimit;

 emit BuyLimitUpdated(_minBuyLimit, _maxBuyLimit);

 }

Remediation

Make these functions internal in next version or the team should announce the investors before doing

anything to give them time if they want to do anything.

P.S: This issue is common to the majority of those smart contracts.

Status: Acknowledged.

Very Low:

No Very Low severity vulnerabilities were found.

Notes:

#Magic Numbers:

Description

 Hardcoded numbers like 1e18, 1e10, 15, 5, 10, 1_000_000, 300_000_000 are used directly in the code

without clear explanations.

Recommendation

Define these as named constants (e.g., _DECIMALS, _BONUS_PRESALE, _BONUS_AFTER_PRESALE,

_DEFAULT_MIN_BUY_LIMIT, _DEFAULT_MAX_BUY_LIMIT, _DEFAULT_PRESALE_PURCHASE_LIMIT). This

improves readability and maintainability.

Code Example:

Solidity

uint256 public constant TOKEN_DECIMALS_FACTOR = 1e18;

uint256 public constant CHAINLINK_PRICE_DECIMALS_ADJUSTMENT = 1e10;

uint256 private constant PRESALE_BONUS_PERCENTAGE = 15;

uint256 private constant AFTER_PRESALE_BONUS_PERCENTAGE = 5;

// In constructor

minBuyLimit = 10 * TOKEN_DECIMALS_FACTOR;

uint256 bonusPercentage = block.timestamp <= presaleEndTimestamp ?

PRESALE_BONUS_PERCENTAGE : AFTER_PRESALE_BONUS_PERCENTAGE;

Use of block.timestamp for comparisons

The value of block.timestamp can be manipulated by the miner. And conditions with
strict equality is difficult to achieve - block.timestamp.

function updateVestingSchedule(uint256 _vestingStartTime, uint256
_vestingDuration) external onlyOwner {

 require(_vestingStartTime > block.timestamp, "Start
timestamp must be in the future");

 require(_vestingDuration > 0, "Vesting duration can't be
zero");

 vestingStartTime = _vestingStartTime;

 vestingDuration = _vestingDuration;

 emitVestingDurationUpdated(_vestingStartTime,_vestingDuration;}

Recommendation

Avoid use of block.timestamp.

Automatic Testing

1- SOLIDITY STATIC ANALYSIS

2- Inheritance graph

3- Call graph

Source lines

Risk level

Source units in scope

Capabilities

Unified Modeling Language (UML)

Functions signature

| Function Name | Sighash | Function Signature |

| ------------- | ---------- | ------------------ |

| totalSupply | 18160ddd | totalSupply() |

| balanceOf | 70a08231 | balanceOf(address) |

| transfer | a9059cbb | transfer(address,uint256) |

| allowance | dd62ed3e | allowance(address,address) |

| approve | 095ea7b3 | approve(address,uint256) |

| transferFrom | 23b872dd | transferFrom(address,address,uint256) |

| owner | 8da5cb5b | owner() |

| renounceOwnership | 715018a6 | renounceOwnership() |

| transferOwnership | f2fde38b | transferOwnership(address) |

| addVestingSchedule | 24ef8c1b |

addVestingSchedule(address,uint256,uint256,uint256) |

| addPresaleVestingSchedule | ccc65551 |

addPresaleVestingSchedule(address,uint256,uint256,uint256) |

| setVestingPresaleEndTimestamp | 0a3cbdd5 |

setVestingPresaleEndTimestamp(uint256) |

| latestRoundData | feaf968c | latestRoundData() |

| latestRoundData | feaf968c | latestRoundData() |

| buyTokenBNB | f27827b4 | buyTokenBNB() |

| buyTokenUSDT | b5e75e1c | buyTokenUSDT(uint256) |

| updatePresalePhase1Price | 5ccb48c8 | updatePresalePhase1Price(uint256)

|

| updatePresalePhase2Price | 0b7ab158 | updatePresalePhase2Price(uint256)

|

| updateVestingSchedule | 72b320fe |

updateVestingSchedule(uint256,uint256) |

| updatePresaleTimestamp | 227640f9 | updatePresaleTimestamp(uint256) |

| updateAdminAddress | 85e2381c | updateAdminAddress(address) |

| updateBuyLimit | 983168fc | updateBuyLimit(uint256,uint256) |

| getBnbPricePerToken | f5bb4f59 | getBnbPricePerToken() |

| getUsdtPricePerToken | 74508abc | getUsdtPricePerToken() |

| withdrawStuckBNB | 484ed334 | withdrawStuckBNB() |

| withdrawStuckTokens | cb963728 | withdrawStuckTokens(address) |

Automatic general report

Files Description Table

| File Name | SHA-1 Hash |

|-------------|--------------|

| /Users/macbook/Desktop/smart contracts/PresaleChaufr.sol |

198fb3829689cb5375cfebd44dd30b7ebcfb30f0 |

 Contracts Description Table

| Contract | Type | Bases |

| |

|:----------:|:-------------------:|:----------------:|:----------------

:|:---------------:|

| └ | **Function Name** | **Visibility** | **Mutability**

| **Modifiers** |

||||||

| **IERC20** | Interface | |||

└	totalSupply	External ❗️		NO❗️
└	balanceOf	External ❗️		NO❗️
└	transfer	External ❗️	🛑	NO❗️
└	allowance	External ❗️		NO❗️
└	approve	External ❗️	🛑	NO❗️
└	transferFrom	External ❗️	🛑	NO❗️

| **Context** | Implementation | |||

| └ | _msgSender | Internal 🔒 | | |

| └ | _msgData | Internal 🔒 | | |

| └ | _contextSuffixLength | Internal 🔒 | | |

||||||

| **Ownable** | Implementation | Context |||

└	<Constructor>	Public ❗️	🛑	NO❗️
└	owner	Public ❗️		NO❗️
└	_checkOwner	Internal 🔒		

| └ | renounceOwnership | Public ❗️ | 🛑 | onlyOwner |

| └ | transferOwnership | Public ❗️ | 🛑 | onlyOwner |

| └ | _transferOwnership | Internal 🔒 | 🛑 | |

||||||

| **ReentrancyGuard** | Implementation | |||

| └ | <Constructor> | Public ❗️ | 🛑 |NO❗️ |
| └ | _nonReentrantBefore | Private 🔐 | 🛑 | |

| └ | _nonReentrantAfter | Private 🔐 | 🛑 | |

| └ | _reentrancyGuardEntered | Internal 🔒 | | |

||||||

| **IChaufrVesting** | Interface | |||

└	addVestingSchedule	External ❗️	🛑	NO❗️
└	addPresaleVestingSchedule	External ❗️	🛑	NO❗️
└	setVestingPresaleEndTimestamp	External ❗️	🛑	NO❗️

| **IChainlinkAggregatorBnb** | Interface | |||

| └ | latestRoundData | External ❗️ | |NO❗️ |
||||||

| **IChainlinkAggregatorUsdt** | Interface | |||

| └ | latestRoundData | External ❗️ | |NO❗️ |
||||||

| **PresaleChaufr** | Implementation | Ownable, ReentrancyGuard |||

| └ | <Constructor> | Public ❗️ | 🛑 | Ownable |

| └ | buyTokenBNB | External ❗️ | 💵 | nonReentrant |

| └ | buyTokenUSDT | External ❗️ | 🛑 | nonReentrant |

| └ | updatePresalePhase1Price | External ❗️ | 🛑 | onlyOwner |

| └ | updatePresalePhase2Price | External ❗️ | 🛑 | onlyOwner |

| └ | updateVestingSchedule | External ❗️ | 🛑 | onlyOwner |

| └ | updatePresaleTimestamp | External ❗️ | 🛑 | onlyOwner |

| └ | updateAdminAddress | External ❗️ | 🛑 | onlyOwner |

| └ | updateBuyLimit | External ❗️ | 🛑 | onlyOwner |

└	getBnbPricePerToken	Public ❗️		NO❗️
└	getUsdtPricePerToken	Public ❗️		NO❗️
└	_tokenPriceByPhase	Internal 🔒		

| └ | withdrawStuckBNB | External ❗️ | 🛑 | onlyOwner nonReentrant |

| └ | withdrawStuckTokens | External ❗️ | 🛑 | onlyOwner nonReentrant |

| └ | <Receive Ether> | External ❗️ | 💵 |NO❗️ |
| └ | <Fallback> | External ❗️ | 💵 |NO❗️ |

 Legend

| Symbol | Meaning |

|:--------:|-----------|

| 🛑 | Function can modify state |

| 💵 | Function is payable |

Conclusion

The contracts are written systematically. Team found no critical issues. So, it is

good to go for production.

Since possible test cases can be unlimited and developer level documentation (code

flow diagram with function level description) not provided, for such an extensive smart

contract protocol, we provide no such guarantee of future outcomes. We have used

all the latest static tools and manual observations to cover maximum possible test

cases to scan Everything.

Security state of the reviewed contract is “Well Secured”.

✔ No volatile code.

✔ No high severity issues were found.

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as of the date of this report, in relation to cybersecurity vulnerabilities and issues in the
framework and algorithms based on smart contracts, the details of which are set out in this report.
In order to get a full view of our analysis, it is crucial for you to read the full report. While we have
done our best in conducting our analysis and producing this report, it is important to note that you
should not rely on this report and cannot claim against the team on the basis of what it says or
doesn’t say, or how team produced it, and it is important for you to conduct your own independent
investigations before making any decisions. team go into more detail on this in the below
disclaimer below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you

do not agree to the terms, then please immediately cease reading this report, and

delete and destroy any and all copies of this report downloaded and/or printed by you.

This report is provided for information purposes only and on a non-reliance basis, and

does not constitute investment advice. No one shall have any right to rely on the report

or its contents, and Saferico and its affiliates (including holding companies,

shareholders, subsidiaries, employees, directors, officers and other representatives)

(Saferico s) owe no duty of care towards you or any other person, nor does Saferico

make any warranty or representation to any person on the accuracy or completeness of

the report. The report is provided "as is", without any conditions, warranties or other

terms of any kind except as set out in this disclaimer, and Saferico hereby excludes all

representations, warranties, conditions and other terms (including, without limitation, the

warranties implied by law of satisfactory quality, fitness for purpose and the use of

reasonable care and skill) which, but for this clause, might have effect in relation to the

report. Except and only to the extent that it is prohibited by law, Saferico hereby

excludes all liability and responsibility, and neither you nor any other person shall have

any claim against Saferico, for any amount or kind of loss or damage that may result to

you or any other person (including without limitation, any direct, indirect, special,

punitive, consequential or pure economic loss or damages, or any loss of income,

profits, goodwill, data, contracts, use of money, or business interruption, and whether in

delict, tort (including without limitation negligence), contract, breach of statutory duty,

misrepresentation (whether innocent or negligent) or otherwise under any claim of any

nature whatsoever in any jurisdiction) in any way arising from or connected with this

report and the use, inability to use or the results of use of this report, and any reliance

on this report. The analysis of the security is purely based on the smart contracts alone.

No applications or operations were reviewed for security. No product code has been

reviewed.

	Table of Contents
	Background
	Project Information
	Executive Summary

	File and Function Level Report
	File in Scope:

	Issues Checking Status
	Audit Findings
	Critical:
	High:
	Medium:
	Low:

	P.S: This issue is common to the majority of those smart contracts.
	Status: Acknowledged.
	function updatePresalePhase1Price(uint256 _usdPresalePhase1Price) external onlyOwner {
	require(_usdPresalePhase1Price > 0, "Price cannot be zero");
	presalePhase1UsdPrice = _usdPresalePhase1Price;
	emit PriceUpdated(_usdPresalePhase1Price);
	}
	function updatePresalePhase2Price(uint256 _usdPresalePhase2Price) external onlyOwner {
	require(_usdPresalePhase2Price > 0, "Price cannot be zero");
	presalePhase2UsdPrice = _usdPresalePhase2Price;
	emit PriceUpdatedForAfterPresale(_usdPresalePhase2Price);
	}
	function updatePresaleTimestamp(uint256 _presaleEndTimestamp) external onlyOwner {
	require(_presaleEndTimestamp >= block.timestamp, "Timestamp must be in the future");
	presaleEndTimestamp = _presaleEndTimestamp;
	vesting.setVestingPresaleEndTimestamp(_presaleEndTimestamp);
	emit PresaleEndTimestampUpdated(_presaleEndTimestamp);
	}
	function updateBuyLimit(uint256 _minBuyLimit, uint256 _maxBuyLimit) external onlyOwner {
	require(_minBuyLimit > 0 && _maxBuyLimit > 0, "Amount could not be zero");
	require(_minBuyLimit != minBuyLimit || _maxBuyLimit != maxBuyLimit, "At least one value must be different");
	minBuyLimit = _minBuyLimit;
	maxBuyLimit = _maxBuyLimit;
	emit BuyLimitUpdated(_minBuyLimit, _maxBuyLimit);
	}
	Remediation
	Make these functions internal in next version or the team should announce the investors before doing anything to give them time if they want to do anything.
	P.S: This issue is common to the majority of those smart contracts.
	Status: Acknowledged.
	Very Low:
	Notes:
	Automatic Testing

	Functions signature
	Automatic general report
	Conclusion
	Disclaimer

